Stereocontrol in radical-mediated allylation of acyclic α-bromo-β-siloxy esters by complexation with lanthanide shift reagents $\mathbf{L n}(\mathrm{fod}){ }_{3}{ }^{1}$

Hajime Nagano,* Yukie Kuno, Yuriko Omori and Mayumi Iguchi
Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112, Japan

Abstract

Stereoselectivity in the radical-mediated allylation of α-bromo- β-siloxy esters $\mathbf{2}$ yielding α-allyl- β-siloxy esters 3 (syn) and 4 (anti) was remarkably affected when the reaction was conducted in the presence of $\mathrm{Ln}(\mathrm{fod})_{3}$ [$=$ tris-($6,6,7,7,8,8,8$-heptafluoro-2,2-dimethyloctane-3,5-dionato)lanthanide]. In the allylation of α-bromo- β-siloxysuccinate esters 2 c and 2 d affording preferentially syn-diastereoisomers 3 c and 3 d through chelated transition states a stoichiometric amount of the Lewis acid [Eu(fod) $)_{3}$ or $\mathrm{La}(\mathrm{fod})_{3}$] was required in order to maximize the stereoselectivities, whereas in the reaction of α-bromo- β siloxybutanoate esters 2 g and 2 h and α-bromo- β-siloxy- β-phenylpropanoate ester 2 i the effect induced by the coordination of $\mathrm{Eu}(\mathrm{fod})_{3}$ to the ester group was catalytic.

Introduction

A current interest in radical chemistry is the control of acyclic stereochemistry. In particular, attention has focused on chirality transfer using a stereogenic centre adjacent to the radical carbon atom (1,2 -stereoinduction), ${ }^{2}$ and, recently, stereoselective trapping of radicals $\mathbf{1}$ bearing a carbonyl group

1
and a stereogenic centre has been demonstrated by Hart, ${ }^{3}$ Guindon,,${ }^{4,55}$ Giese, ${ }^{5}$ Curran, ${ }^{6}$ and others. ${ }^{7}$ However, little is known about controlling the stereochemistry by complexation of radical intermediates (whether cyclic or acyclic) with Lewis acids, ${ }^{3 c, 4 c, 8}$ except for the case of α-sulfinyl radicals (strong Lewis bases) showing promise for stereocontrol. ${ }^{9}$ We now report that the stereoselectivity in the radical-mediated allylation of α-bromo- β-siloxy esters 2 yielding α-allyl- β-siloxy esters 3 and 4 was significantly affected when the reaction was conducted in the presence of $\operatorname{Ln}(f \text { fod })_{3}[=$ tris- $(6,6,7,7$, 8,8,8-heptafluoro-2,2-dimethyloctane-3,5-dionato)lanthanide] (Scheme 1).

Results and discussion

Bromides 2c-2e were prepared by standard silylation of hydroxy diester 2a, which was derived from diethyl ($2 R, 3 R$)tartrate via acetate 2b. ${ }^{10}$ Bromide $2 f$ was prepared similarly from diisopropyl $(2 R, 3 R)$-tartrate. Bromides $\mathbf{2 i}$ and $2 \mathbf{j}$ were obtained by standard silylation of the corresponding known alcohols. ${ }^{6 c}$ Authentic products $\mathbf{4 b}-\mathbf{4 d}$ were prepared by allylation of the dianion of diethyl malate, ${ }^{11}$ and subsequent standard acetylation or silylation. The 3-H doublet signals of compounds 3b-3d in their ${ }^{1} \mathrm{H}$ NMR spectra were observed consistently at lower field than those of $\mathbf{4 b}-\mathbf{4 d}$, and the stereochemistry of compounds $\mathbf{3 e}, \mathbf{4 e}, \mathbf{3 f}$ and $\mathbf{4 f}$ was assigned based on the chemical shifts of their 3-H signals ($3 \mathrm{e}: 4.54$; $\mathbf{4 e}$: $4.44 ; \mathbf{3 f}: 4.47 ; 4 \mathrm{f}: 4.29$). Allylation of $\mathbf{2 g}$ and $\mathbf{2 h}$ has already been reported. ${ }^{6 c}$ The stereochemistry of the ethyl esters $\mathbf{3 j}$ and $\mathbf{4 j}$ was assigned by comparison of their ${ }^{1} \mathrm{H}$ NMR spectral data with

a; $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{\mathbf{3}}=\mathrm{Et}$
b; $R^{1}=\mathrm{CO}_{2} E t, R^{2}=A c, R^{3}=E t$
c: $R^{1}=\mathrm{CO}_{2} E t, R^{2}=\mathrm{SiMe}_{3}, \mathrm{R}^{3}=\mathrm{Et}$
d; $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{t}, \mathrm{R}^{3}=\mathrm{Et}$
e; $\mathrm{R}^{1}=\mathrm{CO}_{2} E t, \mathrm{R}^{2}=\mathrm{SiPh}_{2} \mathrm{Bu} \mathrm{B}^{t}, \mathrm{R}^{3}=\mathrm{Et}$
f; $R^{1}=\mathrm{CO}_{2} \mathrm{Pr}^{\mathrm{i}}, \mathrm{R}^{\mathbf{2}}=\mathrm{SiMe}_{2} \mathrm{Bu}^{t}, \mathrm{R}^{3}=\operatorname{Pr}^{\mathrm{i}}$
g: $R^{1}=M e, R^{2}=\operatorname{SiMe}_{2} B u^{t}, R^{3}=E t$
h; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{SiPh}_{2} \mathrm{Bu}^{t}, \mathrm{R}^{3}=\mathrm{Et}$
i; $R^{1}=P h, R^{2}=S i M e_{2} B u^{t}, R^{3}=M e$
j: $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{t}, \mathrm{R}^{3}=\mathrm{Et}$
Scheme 1 Radical-mediated allylation of bromides 2 with $\mathrm{CH}_{2}=\mathrm{CH}-$ $\mathrm{CH}_{2} \mathrm{SnBu}_{3}$. The syn-anti designation indicates here the relative configuration of substituents OR^{2} and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ (main chain $\mathrm{R}^{1} \mathrm{CHCHCO}_{2} \mathrm{R}^{3}$). Reagents and conditions: $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{SnBu}_{3}$, AIBN, $\operatorname{Ln}(\mathrm{fod})_{3}, h \nu$.
those of the methyl esters $\mathbf{3 i}$ and $\mathbf{4 i}$, which were desilylated to the corresponding known alcohols. ${ }^{3 c}$
Diastereoisomeric ratios of the inseparable mixtures of compounds $\mathbf{3}$ and $\mathbf{4}$ were determined by integration of resonances in ${ }^{1} \mathrm{H}$ NMR or ${ }^{13} \mathrm{C}$ NMR spectra (see Experimental section). ${ }^{12}$

Allylation of bromides $\mathbf{2}$ was conducted with 2 mol equiv. of allyltributyltin and a catalytic amount of azoisobutyronitrile (AIBN) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.07-0.08 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ under irradiation with a 100 W tungsten-filament lamp or 400 W Xe lamp in the presence (or absence) of $\operatorname{Ln}(f o d) 3_{3} \dagger$ A summary of the allylation results is given in Table 1.
Allylation of bromides $\mathbf{2 a}-\mathbf{2 j}$ showed modest to poor stereoselectivities in the absence of Lewis acid (entries 1, 3, 5, 8, $19,25,27$ and 30). Addition of 1.1 mol equiv. of $\mathrm{Eu}(\mathrm{fod})_{3}$ reversed the stereoselectivity in the reaction of compound $\mathbf{2 a}$,

[^0]Table 1 Radical-mediated allylation of bromides 2 with $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{SnBu}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{a}$ (Scheme 1 applies)

Entry	Bromide 2	$\operatorname{Ln}(\text { fod })_{3}$ (mol equiv.)	Temp. $\left(\theta /{ }^{\circ} \mathrm{C}\right)$	Yield of stereoisomers 3 and $4(\%)^{b}$	$\begin{aligned} & \text { Ratio } \\ & \mathbf{3 : 4} \end{aligned}$
1	a		reflux	85	1:1.9
2	a	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	reflux	63	1.7:1
3	b		reflux	56	1.8:1
4	b	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	reflux	72	3.4:1
5	c		reflux	63	1.3:1
6	c	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	reflux	45	3.0:1
7	c	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	reflux	62	8.6:1
8	d		reflux	57	1.1:1
9	d	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	reflux	81	2.7:1
10	d	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	32	73	4.9:1
11	d	$\mathrm{Eu}(\mathrm{fod})_{3}(0.3)$	reflux	61	4.1:1
12	d	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	reflux	67	5.7:1
13	d	$\mathrm{La}(\mathrm{fod})_{3}(0.1)$	32	63	5.4:1
14	d	$\mathrm{La}(\mathrm{fod})_{3}(0.1)$	3	68	8.6:1
15	d	$\mathrm{La}(\mathrm{fod})_{3}(0.1)$	-10	71	4.3:1
16	d	$\mathrm{La}(\mathrm{fod})_{3}(1.1)$	3	63	10.9:1
17	e	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	reflux	66	1.5:1
18	f	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	reflux	77	1.7:1
19	g		32	94	1:2.2 ${ }^{\text {c }}$
20	g	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	32	91	1:4.0
21	g	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	32	81	1:4.1
22	g	$\operatorname{Pr}(\mathrm{fod})_{3}(0.1)$	32	58	1:3.3
23	g	$\mathrm{La}(\mathrm{fod})_{3}(0.1)$	32	67	1:3.4
24	g	$\mathrm{La}(\mathrm{fod})_{3}(0.5)$	32	62	1:3.4
25	h		reflux	66	1:1.2 ${ }^{\text {c }}$
26	h	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	32	94	1:1.7
27	i		32	100	3.4:1
28	i	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	32	88	4.0:1
29	i	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	32	77	4.0:1
30	J		32	100	3.0:1
31	j	$\mathrm{Eu}(\mathrm{fod})_{3}(0.1)$	32	91	4.1:1
32	j	$\mathrm{Eu}(\mathrm{fod})_{3}(1.1)$	32	94	4.8:1

${ }^{a}$ Allylation of bromides 2 was conducted with 2 mol equiv. of allyltributyltin and a catalytic amount of AIBN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.07-0.08 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ under irradiation from a 100 W tungsten-filament lamp (entries $1-9,11,12,17,18$ and 25) or 400 W Xe lamp (entries 10, 13-16, 19-24 and 26-32) in the presence (or absence) of $\mathrm{Ln}(\mathrm{fod})_{3} .{ }^{b}$ Isolated yield. ${ }^{c}$ See ref. $6 \mathrm{c} . \mathbf{3 g}: \mathbf{4 g}=1: 1.5$ and $\mathbf{3 h}: \mathbf{4 h}=1: 1$ (at $80^{\circ} \mathrm{C}$).
but the stereoselectivity enhancement induced by complexation was not large (entry 2). In the case of substrates $\mathbf{2 b}, \mathbf{2 c}$ and 2d the addition of $\mathrm{Eu}(\mathrm{fod})_{3}(1.1 \mathrm{~mol}$ equiv.) led to high stereoselectivity enhancement (entries 4, 7 and 12). Racemization of compounds $\mathbf{3 d}$ and $\mathbf{4 d}$ was not observed after HPLC analysis of the (R)-MTPA [" α-methoxy- α-(trifluoromethyl)phenylacetate"] esters ($\mathbf{3 k}$ and $\mathbf{4 k}$) and (S)-MTPA esters ($\mathbf{3 l}$ and 41) derived from silyl ethers $\mathbf{3 d}$ and $\mathbf{4 d} .{ }^{13}$ The stereoselectivity induced by the coordination of the ester groups to $\mathrm{Eu}(\mathrm{fod})_{3}$ in the reaction of bromides $\mathbf{2 c}$ and $\mathbf{2 d}$ decreased as the molar ratio of $\operatorname{Eu}(\mathrm{fod})_{3}$ was decreased (entries 6,9 and 11), but further improvement of stereoselectivity was not attained even in the presence of 2.0 mol equiv. of $\mathrm{Eu}(\mathrm{fod})_{3}$. The reaction may proceed through the $1: 1$ complex $\left[2 \cdot \operatorname{Ln}(\text { fod })_{3}\right]$ rather than the $1: 2$ complex $\left[2 \cdot 2 \operatorname{Ln}(f o d)_{3}\right]$ in spite of the presence of two ester groups in bromides 2. The diastereoisomer ratio depended on the irradiation conditions when a catalytic amount of $\mathrm{Eu}(\mathrm{fod})_{3}$ was used (entries 9 and 10), whereas in the presence of 1.1 mol equiv. of the Lewis acid the ratio was not influenced (entry 12). Allylation of bromides $\mathbf{2 e}$ and $\mathbf{2 f}$ showed poor stereoselectivity in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ (entries 17 and 18).

The weaker Lewis acid $\mathrm{Eu}(\mathrm{tfc})_{3}\{=$ tris-[3-(trifluoro-methylhydroxymethylene)-(- -camphorato]europium $\}$ was less effective ($\mathbf{3 d}: \mathbf{4 d}=2.2: 1$). $\operatorname{Pr}(\text { thd })_{3}[=$ tris-(2,2,6,6-tetra-methylheptane-3,5-dionato)praseodymium] and $\mathrm{Yb}(\text { thd })_{3}$ had no effect on the stereoselectivity in the reaction of bromide 2d. Although Renaud and Curran have recently reported the efficient stereocontrol in the radical-mediated allylation by complexation of $\mathrm{Eu}(\text { thd })_{3}$ with a sulfinyl group (strong Lewis base), ${ }^{9,9 e}$ weaker Lewis bases 2 c and $\mathbf{2 d}$ required stronger Lewis acids such as $\operatorname{Ln}(f o d){ }_{3}$ to achieve effective stereocontrol.
The diastereoisomer ratios $\mathbf{3 d}: \mathbf{4 d}$ in the allylation of bromide 2d performed in the presence of 1.1 mol equiv. of $\operatorname{Ln}(\mathrm{fod})_{3}$ under irradiation with a 100 W tungsten-filament lamp decreased in the order of $\operatorname{Pr}(f o d)_{3}(6.3: 1 ; 56 \% \text { yield), Eu(fod) })_{3}(5.7: 1$; $\left.67 \%), \operatorname{Gd}(\text { fod })_{3}(4.2: 1 ; 81 \%), \operatorname{Dy}(f o d)\right)_{3}(3.4: 1 ; 84 \%), \operatorname{Er}(f o d)_{3}$ $(2.2: 1 ; 77 \%)$ and $\mathrm{Ho}(\mathrm{fod})_{3}(2.1: 1 ; 96 \%)$. This result shows that the selectivity depends on the formation constants which decrease from large, lighter Ln^{3+} to small, heavier $\mathrm{Ln}^{3+} .{ }^{14}$ In fact, $\mathrm{La}(\mathrm{fod})_{3}$, possessing the largest metal ion radius of the lanthanide elements, was highly efficient and improved the syn diastereoselectivity to $5.4: 1$ in the presence of 0.1 mol equiv. of the Lewis acid (entry 13; cf. entry 10). Furthermore, the diastereoisomer ratio $\mathbf{3 d}: \mathbf{4 d}$ increased to $10.9: 1$ and $8.6: 1$ when the reaction was conducted at $3^{\circ} \mathrm{C}$ in the presence of 1.1 and 0.1 mol equiv. of $\mathrm{La}(\mathrm{fod})_{3}$, respectively (entries 14 and 16 ; in the absence of the Lewis acid the ratio $\mathbf{3 d}: 4 \mathrm{~d}$ was $1.2: 1$ at $3^{\circ} \mathrm{C}$). However, the stereoselectivity was lower when the reaction was conducted at $-10^{\circ} \mathrm{C}$ (entry 15).

The stereocontrol observed in the reaction of compounds $\mathbf{2 c}$ and $\mathbf{2 d}$ is referred to the coordination of the ester groups

Scheme 2 Transition-state models A-D. Large arrow Ω shows the approach of allyltributyltin.
$\mathrm{C}^{\alpha}-\mathrm{CO}_{2} \mathrm{Et}$ and/or $\mathrm{C}^{\beta}-\mathrm{CO}_{2} \mathrm{Et}$ to $\mathrm{Ln}(\mathrm{fod})_{3}$. To reveal the participation of the $\mathrm{C}^{\alpha}-\mathrm{CO}_{2} \mathrm{Et}$ moiety in the stereocontrol, allylation of bromides $\mathbf{2 g} \mathbf{- 2 j}$ possessing an ester group adjacent to the radical centre was carried out. Very interestingly, in the case of compounds $\mathbf{2 g}-\mathbf{2}$ the effect of $\operatorname{Ln}(\text { fod })_{3}$ was catalytic (entries $20-24,26,28$ and 29). $\operatorname{Pr}(\text { fod })_{3}$ and $\mathrm{La}(\text { fod })_{3}$ were slightly less effective than $\mathrm{Eu}(\mathrm{fod})_{3}$ (entries 20,22 and 23), in contrast to the allylation of compounds 2 c and 2 d . These results show that in the reactions of bromides 2 c and $\mathbf{2 d}$ coordination of the two ester groups, $\mathrm{C}^{\alpha}-\mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{C}^{\beta}-$ $\mathrm{CO}_{2} \mathrm{Et}$, to $\mathrm{Ln}(\mathrm{fod})_{3}$ contributes to the stereocontrol and that 1 mol equiv. of $\operatorname{Ln}(f o d)_{3}$ is required to maximize the stereoselectivity.

Steric and electronic effects governing stereoselectivity of intermolecular radical reactions of acyclic systems are fairly well understood. ${ }^{2}$ Reduction of compounds $\mathbf{2 g}$ and $\mathbf{2 h}$ with $\mathrm{Bu}_{3} \mathrm{SnD}$, affording preferentially the anti diastereoisomers, has been reported to proceed through transition-state model \mathbf{C} $\left(\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{t}\right.$ or $\left.\mathrm{SiPh}_{2} \mathrm{Bu}^{1}\right)$ rather than model \mathbf{A}. In model \mathbf{C} both the $\Delta^{1,3}$ allylic strain and the dipole-dipole interaction due to the polar groups, $\mathrm{CO}_{2} \mathrm{Et}$ and OR^{2}, are minimized (Scheme 2). In the allylation of compounds $\mathbf{2 g}$ and 2 h with the large reagent allyltributyltin, however, highenergy transition-state models \mathbf{B} and $\mathbf{D}\left(\mathbf{X}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{1}=\right.$ $\mathrm{Me}, \mathrm{R}^{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{t}$ or $\mathrm{SiPh}_{2} \mathrm{Bu}^{1}$) also participate. Decreasing the stereoselectivity in allylation by increasing the size of the silyl groups (entries 19 and 25) is opposite to the stereocontrol in reduction with the small reagent $\mathrm{Bu}_{3} \mathrm{SnD}^{6}{ }^{6 c}$ As the size of the silyl group increases, transition-state model \mathbf{D}, where large steric repulsion between $\mathrm{CO}_{2} \mathrm{Et}$ and the siloxy group exists, rises in energy. In the case of compound 2 g coordinated to $\mathrm{Ln}(\mathrm{fod})_{3}, \ddagger$ the transition-state models \mathbf{B} and $\mathbf{D}\left(\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et} \cdot\right.$ $\left.\operatorname{Ln}(\mathrm{fod})_{3}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{\mathrm{t}}\right)$ must be disfavoured because of the large $\Delta^{1,3}$ allylic strains between the bulky

[^1]$\mathrm{CO}_{2} \mathrm{Et} \cdot \mathrm{Ln}(\mathrm{fod})_{3}$ group and Me and between $\mathrm{CO}_{2} \mathrm{Et} \cdot \mathrm{Ln}(\mathrm{fod})_{3}$ and $\mathrm{OSiMe}_{2} \mathrm{Bu}^{3}$. Approach of the large reagent allyltributyltin between H and $\mathrm{OSiMe}_{2} \mathrm{Bu}^{i}$ in model \mathbf{A} is probably prohibited. Allylation would consequently proceed through the complexed transition-state model $\mathbf{C}\left(\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et} \cdot \mathrm{Ln}(\mathrm{fod})_{3}, \mathrm{R}^{1}=\mathrm{Me}\right.$, $\mathrm{R}^{2}=\mathrm{SiMe}_{2} \mathrm{Bu}^{1}$) to afford compound $\mathbf{4 g}$ (entry 20). \S

Allylation of compounds $\mathbf{2 i}$ and $\mathbf{2 j}$ may proceed preferentially through the transition-state models \mathbf{A} and $\mathbf{B}\left[\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\right.$ $\mathrm{OSiMe}_{2} \mathrm{Bu}^{i}, \mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}$ or $\left.\mathrm{CO}_{2} \mathrm{Et}\right]$ to yield syn products $\mathbf{3 i}$ and $\mathbf{3 j}$, respectively. Poor stereoselectivity enhancement induced by coordination of $\mathrm{Eu}(\mathrm{fod})_{3}$ is referred to the diminution of conformer \mathbf{B} because of large steric repulsion between Ph and $\mathrm{CO}_{2} \mathrm{Et} \cdot \mathrm{Eu}(\mathrm{fod})_{3}{ }^{4 b}$ Association-dissociation of $\operatorname{Ln}(\mathrm{fod})_{3}$ probably is faster than the allylation reaction and therefore the reaction is catalytic. Allyltributyltin is nucleophilic in character, and an increase of reactivity by complexation is expected. However, although a catalytic amount of $\mathrm{Eu}(\mathrm{fod})_{3}$ did not affect the reaction rate, as the amount of the Lewis acid was increased the reactivity decreased and the reaction was about 5 times slower when 1.1 mol equiv. of $\mathrm{Eu}(\mathrm{fod})_{3}$ was used (vide infra).

E

F

Allylations of bromides $\mathbf{2 c}-\mathbf{2 e}$ in the presence of 1 mol equiv. of $\operatorname{Ln}(f o d))_{3}$ may proceed through the chelated transition-state model \mathbf{E} to afford compounds $\mathbf{3 c}-\mathbf{3 e}$ as the major products. The stereoselectivity decreased as the bulk of silyl groups was increased (entries 7, 12 and 17). This excludes the alternative transition-state model $\mathbf{F},{ }^{4 c}$ since the stereoselectivity in the reaction proceeding through \mathbf{F} is independent of the size of \mathbf{R}^{2}. To avoid $\Delta^{1,3}$ allylic strain and the electrostatic repulsion between the polar ester groups, the seven-membered chelated radical intermediate would adopt conformation \mathbf{E} rather than F. \mid

The lower stereoselectivity in the reaction of bromide $\mathbf{2 d}$ conducted at $-10^{\circ} \mathrm{C}$ (entry 15) compared with that at $3^{\circ} \mathrm{C}$ (entry 14) shows that the association-dissociation of $\mathrm{La}(\mathrm{fod})_{3}$ is probably slower at $-10^{\circ} \mathrm{C}$ and the proportion of the allylation proceeding through the complexed intermediates may be diminished. Apparent acceleration of the allylation reaction of bromide $\mathbf{2 d}$ by chelate formation was observed when the reaction was conducted at $3^{\circ} \mathrm{C}$ in the presence of 1.1 mol equiv. of $\mathrm{La}(\mathrm{fod})_{3}$ (vide supra). The reaction proceeded faster (\sim twice) than that performed without the Lewis acid.
In the reaction of bromide $\mathbf{2 f}$ the bulky isopropyl groups may prevent the coordination of $\mathrm{Eu}(\mathrm{fod})_{3}$, and consequently
\S In these transition-state models A-D, stereoisomers 5 (s-trans) and 5 (s-cis) and the coordination geometry of $\operatorname{Ln}(\mathrm{fod})_{3}$ are not taken into account. ${ }^{6 c}$

5 (s-trans)

5 (s-cis)

- Transition-state model \mathbf{E} resembles model \mathbf{A} and a rapid equilibrium between transition-state models $A\left[R^{1}=\mathrm{CO}_{2} \mathrm{Et} \cdot \mathrm{Ln}(\mathrm{fod})_{3}, \mathrm{X}=\right.$ $\mathrm{CO}_{2} \mathrm{Et}$ and $\left.\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{X}=\mathrm{CO}_{2} \mathrm{Et} \cdot \mathrm{Ln}(\mathrm{fod})_{3}\right]$ cannot be neglected.
only slight stereoselectivity enhancement was observed (entry 18; in the absence of the Lewis acid, $\mathbf{3 f}: \mathbf{4 f}=1: 1.1$). The low efficiency observed in the reactions of substrates 2a and 2b may be referred to the chelation of $\mathrm{Eu}(\mathrm{fod})_{3}$ with the OH or OAc group as well as with the ester groups (entries 2 and 4).

In conclusion we have demonstrated that the diastereoselectivity in the radical-mediated allylations of bromides 2 was highly affected by the complexation with the lanthanide shift reagents $\operatorname{Ln}(\mathrm{fod})_{3}$. The chelation-controlled allylation of bromides $2 \mathbf{c}$ and 2 d performed in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ or $\mathrm{La}(\mathrm{fod})_{3}$ gave the $s y n$ isomers 3 c and $\mathbf{3 d}$, respectively, with high diastereoselectivity. Chelation-controlled allylation of the dianion derived from diethyl malate gives anti-isomer $4 \mathbf{a}$ with extremely high stereoselectivity, ${ }^{11}$ and alkylation of diethyl 2,3epoxysuccinate derived from optically active diethyl tartrate gives diethyl anti-3-alkyl-2-hydroxysuccinates. ${ }^{10}$ This work and ours are complementary.

Experimental

Mps were determined on a Yanaco micro melting point apparatus and are uncorrected. IR spectra were taken on a JASCO A-3 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL GX-270 or GSX-270 spectrometer operating at 270 MHz with $\left[{ }^{2} \mathrm{H}\right]$ chloroform (unless otherwise stated) as solvent and tetramethylsilane as internal standard. J Values are given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the instruments operating at 67.8 MHz with $\left[{ }^{2} \mathrm{H}\right]$ chloroform as solvent and internal standard ($\delta_{\mathrm{C}} 77.05$). Mass spectra were obtained on a JEOL DX- 300 mass spectrometer using the electron-impact mode (70 eV). Accurate mass measurements were recorded on the same mass spectrometer. HPLC was carried out with a JASCO TRIROTAR-IV apparatus using UV detector UVIDEC-100VI. Dichloromethane was dried by distillation from calcium hydride. $\mathrm{La}(\mathrm{fod})_{3}$ was prepared from lanthanum nitrate hexahydrate and $6,6,7,7,8,8,8$-heptafluoro-2,2-dimethyloctane-3,5-dione following the reported procedures. ${ }^{15}$ Other lanthanide shift reagents were purchased from Aldrich. Silica gel (Wakogel $\mathrm{C}-300$) was used for flash column chromatography. Elimination of $\operatorname{Ln}(f o d)_{3}$ was carried out with Merck aluminium oxide 90 active neutral (activity I).

Diethyl (2S,3S)-2-bromo-3-(trimethylsiloxy)succinate 2c

To a solution of diethyl ($2 S, 3 S$)-2-bromo-3-hydroxysuccinate $2 \mathbf{a}^{10}$ ($206 \mathrm{mg}, 0.77 \mathrm{mmol}$) in dry tetrahydrofuran (THF) (12 cm^{3}) were added triethylamine ($0.5 \mathrm{~cm}^{3}, 3.6 \mathrm{mmol}$) and trimethylsilyl chloride ($0.15 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}$) and the mixture was stirred overnight at room temperature. After dilution with hexane the mixture was washed successively with saturated aq. sodium hydrogen carbonate and saturated brine, and dried over anhydrous sodium sulfate. Evaporation off of the solvent gave an oil, which was purified by flash column chromatography (hexane-ethyl acetate, 10:1) to give title compound $\mathbf{2 c}$ (154 mg , 59%) as a pale yellow oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1748,1300,1255$, $1155,1097,1025,980$ and $950 ; \delta_{\mathrm{H}} 4.58(1 \mathrm{H}, \mathrm{d}, J 8.3,2$ - or $3-\mathrm{H})$, $4.46(1 \mathrm{H}, \mathrm{d}, J 8.3,3-$ or $2-\mathrm{H}), 4.25\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and $0.14\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}} 169.5,167.4,74.1$, $62.3,61.7,44.6,14.1,14.0$ and $-0.3 ; m / z 327\left(\mathrm{M}^{+}-\mathrm{Me}, 8 \%\right)$, 325 ($\left.\mathrm{M}^{+}-\mathrm{Me}, 8\right), 269$ (18), 267 (14), 197 (45), 75 (100) and 73 (89) [Found (HRMS): $m / z, 325.0124 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrO}_{5} \mathrm{Si}$ requires $\left.\left(\mathrm{M}^{+}-\mathrm{Me}\right), 325.0107\right]$

Diethyl (2S,3S)-2-bromo-3-(tert-butyldimethylsiloxy)succinate $2 d$

To a solution of diethyl ($2 S, 3 S$)-2-bromo-3-hydroxysuccinate 2a ($501 \mathrm{mg}, 1.86 \mathrm{mmol}$) in dry dimethylformamide (DMF) (2 cm^{3}) cooled to $0{ }^{\circ} \mathrm{C}$ were added imidazole ($456 \mathrm{mg}, 6.69 \mathrm{mmol}$)
and tert-butyldimethylsilyl chloride ($364 \mathrm{mg}, 2.42 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h and then extracted with pentane. The pentane extract was washed with water and dried over anhydrous sodium sulfate. The crude oily product was purified by flash column chromatography (hexane-ethyl acetate, $10: 1$) to give compound $\mathbf{2 d}(608 \mathrm{mg}$, 85%) as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1749,1260,1155,1103,1025,840$ and $780 ; \delta_{\mathrm{H}} 4.57(1 \mathrm{H}, \mathrm{d}, J 8.3,2$ - or $3-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{d}, J 8.5,3-$ or $2-\mathrm{H}), 4.23\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.84(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}) and $0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}} 169.5,167.3,74.5,62.3$, $61.5,44.9,25.5,18.1,14.1,13.9,-5.1$ and $-5.4 ; m / z 369$ $\left(\mathrm{M}^{+}-\mathrm{Me}, 0.8 \%\right), 367\left(\mathrm{M}^{+}-\mathrm{Me}, 1\right), 327\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 31\right)$, $325\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 31\right), 181$ (30), 179 (30), 75 (100) and 73 (69) [Found (HRMS): $m / z, 325.0082 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrO}_{5} \mathrm{Si}$ requires $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, 325.0107].

Diethyl (2S,3S)-2-bromo-3-(tert-butyldiphenylsiloxy)succinate 2 e

Following the procedure for its analogue $\mathbf{2 d}$, compound 2 e was prepared from diethyl ($2 S, 3 S$)-2-bromo-3-hydroxysuccinate 2a ($450 \mathrm{mg}, 1.67 \mathrm{mmol}$), imidazole ($250 \mathrm{mg}, 3.8 \mathrm{mmol}$) and tertbutyldiphenylsilyl chloride ($0.5 \mathrm{~cm}^{3}, 1.9 \mathrm{mmol}$) in dry DMF (2 cm^{3}). Purification by flash column chromatography (hexaneethyl acetate, $100: 1$) gave compound 2 e ($529 \mathrm{mg}, 62 \%$) as prisms, $\mathrm{mp} 59-60^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1744$, $1300,1172,1112,1095$ and $1020 ; \delta_{\mathrm{H}} 7.66\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SiPh}_{2}\right), 7.39(6$ $\mathrm{H}, \mathrm{m}, \mathrm{SiPh}_{2}$), 4.63 ($1 \mathrm{H}, \mathrm{d}, J 8.1,2$ - or $3-\mathrm{H}$), $4.52(1 \mathrm{H}, \mathrm{d}, J 8.1,3-$ or $2-\mathrm{H})$, $4.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 3.97-3.72 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}) and $1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 168.8,167.2$, $136.1,136.0,132.4,132.0,130.2,130.0,127.7,127.5,74.5,62.4$, 61.3, 45.7, 26.8, 19.5, 13.9 and 13.7; $m / z 451\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$, $58 \%), 449\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 58\right), 227$ (94) and 199 (100) [Found (HRMS): $m / z, 449.0420 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrO}_{5} \mathrm{Si}$ requires $\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right), 449.0420$].

Diisopropyl (2S,3S)-2-bromo-3-(tert-butyldimethyl)siloxysuccinate $2 f$

Diisopropyl (2S,3S)-2-bromo-3-hydroxysuccinate, prepared from diisopropyl ($2 R, 3 R$)-tartrate following the procedures reported in ref. 10, was transformed into title compound 2 f as described above. Product $2 f$ showed $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1740 ; \delta_{\mathrm{H}}$ 5.07 (2 H , sept, $J 6.3, \mathrm{CO}_{2} \mathrm{C} H \mathrm{Me}_{2}$), $4.55(1 \mathrm{H}, \mathrm{d}, J 8.1,2$ - or $3-\mathrm{H}$), 4.44 ($1 \mathrm{H}, \mathrm{d}, J 8.1$, 3- or 2-H), 1.29 [$6 \mathrm{H}, J 6.4$, $\left.\mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.27\left[6 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.87(9$ $\mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$) and $0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}} 169.1,166.8,74.6$, $70.2,69.3,45.5,25.5,21.75,21.66,21.60,21.46,18.1,-5.0$ and -5.4; m/z $413\left(\mathrm{M}^{+}+\mathrm{H}, 7 \%\right), 411\left(\mathrm{M}^{+}+\mathrm{H}, 7\right), 313$ (26), 311 (27), 271 (100), 269 (98), 75 (93) and 73 (64) [Found (HRMS): $m / z, 411.1194 . \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{BrO}_{5}$ Si requires $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 411.1203].

Methyl 2-bromo-3-(tert-butyldimethylsiloxy)-3-phenylpropanoate 2 i

Following the procedures for $\mathbf{2 d}$, compound $\mathbf{2 i}$ was prepared from methyl 2-bromo-3-hydroxy-3-phenylpropanoate (289 mg , 1.1 mmol), ${ }^{\text {bc }}$ imidazole ($680 \mathrm{mg}, 10 \mathrm{mmol}$) and tertbutyldimethylsilyl chloride ($505 \mathrm{mg}, 3.4 \mathrm{mmol}$) in DMF (3 cm^{3}). Purification by flash column chromatography (hexaneethyl acetate, $50: 1$) gave compound $\mathbf{2 i}(361 \mathrm{mg}, 87 \%)$ as needles, $\mathrm{mp} 35-36^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745,1268,1072,1018,870,830$ and $775 ; \delta_{\mathrm{H}} 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.98(1 \mathrm{H}, \mathrm{d}, J 9.8,3-\mathrm{H}), 4.21(1 \mathrm{H}$, d, $J 9.8,2-\mathrm{H}), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.01$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$) and -0.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$); δ_{C} 169.5, 140.0, 128.6, 128.2, 127.6, 76.6, 52.8, 49.3, 25.4, 17.9, -4.8 and $-5.5 ; m / z$ 359 ($\mathrm{M}^{+}-\mathrm{Me}, 0.5 \%$), 357 ($\mathrm{M}^{+}-\mathrm{Me}, 0.5$), 317 (27), 315 (26), 199 (19), 197 (19) and 89 (100) [Found (HRMS): $m / z, 315.0034$. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrO}_{3} \mathrm{Si}$ requires $\left.\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 315.0052\right]$.

Ethyl 2-bromo-3-(tert-butyldimethylsiloxy)-3-phenylpropanoate 2j
Compound $\mathbf{2 j}$ was prepared from ethyl 2-bromo-3-hydroxy-3phenylpropanoate ($300 \mathrm{mg}, 1.1 \mathrm{mmol}$), ${ }^{6 c}$ imidazole ($279 \mathrm{mg}, 4.1$ mmol) and tert-butyldimethylsilyl chloride ($227 \mathrm{mg}, 1.5 \mathrm{mmol}$) in DMF ($1 \mathrm{~cm}^{3}$). Purification by flash column chromatography (hexane-ethyl acetate, $30: 1$) gave compound $\mathbf{2 j}$ ($330 \mathrm{mg}, 77 \%$) as an oil, $v_{\max }($ film $) / \mathrm{cm}^{-1} 1749,1260,1180,1140,1080,862,840$, 780 and $700 ; \delta_{\mathrm{H}} 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.99(1 \mathrm{H}, \mathrm{d}, J 9.8,3-\mathrm{H}), 4.30$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), $4.20(1 \mathrm{H}, \mathrm{m}, J 9.8,2-\mathrm{H}), 1.34(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and -0.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$); $\delta_{\mathrm{C}} 169.1,140.1,128.5,128.1,127.6,76.5,61.9$, 49.6, 25.5, 17.9, 13.9, - 4.8 and $-5.4 ; m / z 331\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$, $28 \%), 329\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 28\right)$ and $177(100)$ [Found (HRMS): $m / z, \quad 329.0237 . \quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BrO}_{3} \mathrm{Si}$ requires $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, 329.0208].

Allylation of compound 2 d with allyltributyltin in the presence of $\mathrm{La}\left(\mathrm{fod}_{3}\right)_{3}$, a typical procedure of allylation

To a solution of bromide $\mathbf{2 d}(31 \mathrm{mg}, 0.080 \mathrm{mmol}), \mathrm{La}(\mathrm{fod})_{3}$ ($88 \mathrm{mg}, 0.086 \mathrm{mmol}$) and a catalytic amount of AIBN in dry dichloromethane $\left(0.8 \mathrm{~cm}^{3}\right)$ was added a solution of allyltributyltin ($49 \mathrm{~mm}^{3}, 0.15 \mathrm{mmol}$) in dry dichloromethane $\left(0.4 \mathrm{~cm}^{3}\right)$. The solution was irradiated with a 400 W Xe lamp at $3^{\circ} \mathrm{C}$ for 2 h under nitrogen. After treatment of the mixture with aq. potassium fluoride, the reaction mixture was chromatographed on alumina [5 g ; hexane and then hexane-ethyl acetate ($100: 1$)] to give an inseparable mixture of diastereoisomers 3d and $\mathbf{4 d}(17 \mathrm{mg}, 63 \%)$ as an oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{1} 1737,1640,1255$, $1148,1025,837$ and $778 ; m / z 345\left(\mathrm{M}^{+}+\mathrm{H}, 0.7 \%\right), 329\left(\mathrm{M}^{+}-\right.$ $\mathrm{Me}, 3), 287\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 95\right)$, 75 (100) and 73 (74) [Found (HRMS): $m / z, 329.1761 . \mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{Si}$ requires $\left(\mathrm{M}^{+}-\mathrm{Me}\right)$, 329.1784].

Diethyl (2R,3R)-2-allyl-3-(tert-butyldimethylsiloxy)succinate 3d. $\delta_{\mathrm{H}} 5.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.52$ ($1 \mathrm{H}, \mathrm{d}, J 5.4,3-\mathrm{H}), 4.14\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.92$ ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), $2.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right), 2.37(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H \mathrm{CH}=\mathrm{CH}_{2}\right), 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ; \delta_{\mathrm{C}} 172.3,172.1,135.5,116.8,73.0$, $61.0,60.7,49.8,31.1,25.7,18.2,14.2,14.1,-4.8$ and -5.4 .
Diethyl (2S,3R)-2-allyl-3-(tert-butyldimethylsiloxy)succinate 4d. $\delta_{\mathrm{H}} 5.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.33(1$ $\mathrm{H}, \mathrm{d}, J 5.6,3-\mathrm{H}), 4.14\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.92(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{CH}=\mathrm{CH}_{2}\right), 2.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}_{2}\right)$, $1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ; \delta_{\mathrm{c}}$ 172.0, 171.7, 135.1, 117.1, 73.0, 61.0 , $60.6,50.0,31.9,25.6,18.2,14.2,14.1,-4.8$ and -5.4 .

HPLC analysis of MTPA esters $\mathbf{3 k}, \mathbf{4 k}, 31$ and 41

A mixture of diastereoisomers $\mathbf{3 d}$ and $\mathbf{4 d}$, prepared in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ and purified by column chromatography on alumina, was treated with tetrabutylammonium fluoride in THF to give a mixture of alcohols 3a and 4a. Following the reported procedures, ${ }^{13}$ the mixture was treated with " (R) - or (S)-methoxy(trifluoromethyl)phenylacetic acid" (MTPA), 1,3dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine in dry dichloromethane and then chromatographed on silica gel to give mixtures ($\mathbf{3 k}$ and $\mathbf{4 k}$) and ($\mathbf{3 1}$ and $\mathbf{4 I}$), respectively. Column: FINPAK SIL (JASCO, $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); eluent: hexaneethyl acetate ($20: 1$); flow rate: $1.0 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; detection: $\lambda 250$ $\mathrm{nm}: t_{\mathrm{R}}(\mathbf{3 k}) 26.7 \mathrm{~min} ; t_{\mathrm{R}}(\mathbf{4 k}) 31.0 \mathrm{~min} ; t_{\mathrm{R}}$ ($\mathbf{3 I}$) $27.7 \mathrm{~min} ; t_{\mathrm{R}}$ (4I) 32.4 min .

Determination of the diastereoisomer ratios of 3 and 4

The diastereoisomer ratios of the inseparable mixtures ($\mathbf{3 b} / \mathbf{4 b}$, $\mathbf{3 d} / \mathbf{4 d}-\mathbf{3 f} / \mathbf{4 f}$) were determined by the ${ }^{1} \mathrm{H}$ NMR integration of the signals for $3-\mathrm{H}$. The ratio of isomers 3 a and 4 a was determined after acetylation with acetic anhydride and
pyridine. Compounds $\mathbf{3 c}$ and $\mathbf{4 c}$ were found to be decomposed on alumina. Therefore, when the allylation of compound $\mathbf{2 c}$ was conducted in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$, the crude mixture of diastereoisomers 3c and 4c was successively desilylated and acetylated, and then purified by flash column chromatography to obtain the yield (for three steps) and the diastereoisomer ratio (entries 6 and 7). Resonances for the mixture ($\mathbf{3 g}+\mathbf{4 g}$) were not resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum recorded in CDCl_{3} and therefore the ratio was determined by integration of the SiMe signals recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$. Determination of the $\mathbf{3 h} / \mathbf{4 h}$ ratio was performed using the integration of $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ signals in their ${ }^{13} \mathrm{C}$ NMR spectrum. ${ }^{6}, 12$ The ratios of isomers $\mathbf{3 i} / \mathbf{i}$ and $3 \mathbf{j} / 4 \mathbf{j}$ were obtained by the ${ }^{1} \mathrm{H}$ NMR integrations of $\mathrm{CO}_{2} \mathrm{Me}$ and SiMe_{2} signals, respectively.
Diethyl ($2 R, 3 R$)-2-acetoxy-3-allylsuccinate 3b and diethyl ($2 R, 3 S$)-2-acetoxy-3-allylsuccinate 4b. An oil; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ 1750,1644 and $1210 ; m / z 273\left(\mathrm{M}^{+}+\mathrm{H}, 47 \%\right), 227(47), 166$ (36), 157 (46), 139 (100), 127 (72) and 83 (61) [Found (HRMS): m / z, 273.1340. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{6}$ requires ($\mathrm{M}^{+}+\mathrm{H}$), 273.1338]. Isomer 3b: $\delta_{\mathrm{H}} 5.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.43(1 \mathrm{H}, \mathrm{d}, J 5.4,2-\mathrm{H})$, $5.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.03$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.55\left[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(H) \mathrm{CH}=\mathrm{CH}_{2}\right], 2.37[1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(H) \mathrm{HCH}=\mathrm{CH}_{2}\right], 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 1.28(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and $1.26\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 171.1$, $169.8,168.3,134.5,117.5,71.6,61.6,61.0,46.6,31.6,20.4$, 14.1 and 14.0. Isomer $\mathbf{4 b}$: $\delta_{\mathrm{H}} 5.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.25$ $(1 \mathrm{H}, \mathrm{d}, J 4.9,2-\mathrm{H}), 5.12[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}(H)], 5.07[1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{C}(H) \mathrm{H}], 4.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.10(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 2.55\left[1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(H) \mathrm{CH}=\mathrm{CH}_{2}\right], 2.30[1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(H) \mathrm{HCH}=\mathrm{CH}_{2}\right], 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 1.29(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 170.6$, $170.0,168.5,134.2,118.0,71.5,61.6,61.0,46.2,31.8,20.4,14.1$ and 14.0 .
Diethyl ($2 R, 3 R$)-2-allyl-3-(trimethylsiloxy)succinate 3 c and diethyl (2S,3R)-2-allyl-3-(trimethylsiloxy)succinate 4c. An oil, $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1740,1642,1252,1150,1025$ and $842 ; \mathrm{m} / \mathrm{z} 302$ $\left(\mathrm{M}^{+}, 0.7 \%\right), 287\left(\mathrm{M}^{+}-\mathrm{Me}, 16\right), 229$ (39), 147 (29), 75 (46) and 73 (100) [Found (HRMS): $m / z, 287.1314 . \mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{Si}$ requires ($\mathrm{M}^{+}-\mathrm{Me}$), 287.1315]. Compound 3c: $\delta_{\mathrm{H}} 5.75(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.46(1 \mathrm{H}, \mathrm{d}, J 6.6,3-\mathrm{H})$, $4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.92(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.53-2.15$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} H_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25$ ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and $0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$); $\delta_{\mathrm{C}} 172.4$, $172.2,135.2,117.0,72.3,61.2,60.7,49.4,31.6,14.2,14.1$ and -0.2 . Compound $4 \mathrm{c}: \delta_{\mathrm{H}} 5.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.31(1 \mathrm{H}, \mathrm{d}, J 6.6,3-\mathrm{H}), 4.16\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CO}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 2.92(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.53-2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}\right.$ $\left.\mathrm{CH}_{2}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$) and $0.11\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$; δ_{C} 172.1, 171.9, 135.0, 117.3, 72.7, 61.1, 60.6, 49.6, 31.9, 14.2, 14.1 and -0.1 .

Diethyl ($2 R, 3 R$)-2-allyl-3-(tert-butyldiphenylsiloxy)succinate 3 e and diethyl (2S,3R)-2-allyl-3-(tert-butyldiphenylsiloxy)succinate 4 e . An oil, $v_{\max }($ film $) / \mathrm{cm}^{-1} 1740,1648,1600,1115,1033$, 820, 740 and $703 ; m / z 411\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 100 \%\right.$), 339 (20), 227 (72), 199 (78), 183 (47), 135 (36) and 68 (53) [Found (HRMS): $m / z, 411.1591 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{Si}$ requires $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, 411.1628]. Compound 3e: $\delta_{\mathrm{H}} 7.70-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.45-7.30(6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.54(1$ $\mathrm{H}, \mathrm{d}, J 4.9,3-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.84(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.92(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.70-2.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.08(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}) and $0.99\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 172.2,171.3$, $136.0,135.4,133.1,132.9,129.9,127.4,116.9,73.2,60.8,60.7$, $50.1,31.2,26.9,19.6,14.1$ and 13.8. Compound $\mathbf{4 e}: \delta_{\mathrm{H}} 7.70-7.60$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.45-7.30(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.44(1 \mathrm{H}, \mathrm{d}, J 5.6,3-\mathrm{H}), 4.10(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.92(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $2.70-2.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.23(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right)$ and $1.01(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}} 171.6,171.1,136.0,135.2,133.0,132.8,129.7$,
127.6, 117.0, 73.7, $60.8,60.7,50.3,31.6,26.8,19.6,14.1$ and 13.8 .

Disopropyl (2R,3R)-2-allyl-3-(tert-butyldimethylsiloxy)succinate 3 f and diisopropyl ($\mathbf{2 S , 3 R}$)-2-allyl-3-(tert-butyldimethylsiloxy)succinate 4f. An oil; $v_{\text {max }}$ (film)/ cm^{-1} 1735, 1644, 1260, 1105 and $840 ; m / z 373\left(\mathrm{M}^{+}+\mathrm{H}, 3 \%\right), 315\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 12\right), 185$ (86), 75 (100) and 73 (64) [Found (HRMS): $m / z, 373.2399$. $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{Si}$ requires ($\mathrm{M}^{+}+\mathrm{H}$), 373.2410]. Compound 3 f : $\delta_{\mathrm{H}} 5.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.15-4.95\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$ and $2 \times \mathrm{CO}_{2} \mathrm{CH} \mathrm{Me}_{2}$), $4.47(1 \mathrm{H}, \mathrm{d}, J 5.4,3-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{m}$, 2-H), 2.55-2.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.30-1.20[12 H, m, $\left.2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$. Compound $4 \mathrm{f}: \delta_{\mathrm{H}} 5.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right)$, 5.15-4.95 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$ and $\left.\left.2 \times \mathrm{CO}_{2} \mathrm{CHMe}\right)_{2}\right), 4.29(1 \mathrm{H}$, $\mathrm{d}, J 5.1,3-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.55-2.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.30-1.20\left[12 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.89$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$.
Ethyl (syn)-2-allyl-3-(tert-butyldimethylsiloxy)butanoate $\mathbf{3 g}$ and ethyl (anti)-2-allyl-3-(tert-butyldimethylsiloxy)butanoate $\mathbf{4 g}$. An oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1739,1642,1258,1180,1100,838$ and $775 ; m / z 271\left(\mathrm{M}^{+}-\mathrm{Me}, 2 \%\right), 229\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 52\right), 157(28)$, 103 (43), 75 (100) and 73 (43) [Found (HRMS): $m / z, 271.1710$. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}$ requires ($\mathrm{M}^{+}-\mathrm{Me}$), 271.1730]. Compound 3g: $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 5.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.20-4.95(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.00\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $2.55\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 1.20(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{Me})$, $1.01\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.96\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.04(3$ $\mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$. Compound $4 \mathrm{~g}: \delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $5.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.20-4.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.05-$ $4.00\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.55(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 1.08 ($3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}$), $0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right.$), $0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and 0.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$).

Methyl (syn)-2-allyl-3-(tert-butyldimethylsiloxy)-3-phenylpropanoate 3i and methyl (anti)-2-allyl-3-(tert-butyldimethylsiloxy)-3-phenylpropanoate 4 i. An oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1740,1642,1260$, 1087, 840, 787 and $700 ; m / z 277\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 53 \%\right)$ and 89 (100) [Found (HRMS): $m / z, 277.1264 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 277.1260\right]$. Compound 3i: $\delta_{\mathrm{H}} 7.40-7.12(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 5.84-5.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}\right), 5.12-4.85(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.82(1 \mathrm{H}, \mathrm{d}, J 7.6,3-\mathrm{H}), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.85-$ $2.36\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right)$, $0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $-0.24(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ; \delta_{\mathrm{C}} 173.4,142.8$, $135.8,128.0,127.5,126.5,116.4,75.8,55.6,51.2,32.6,25.7$, 18.1, -4.6 and -5.2 . Compound 4i: $\delta_{\mathrm{H}} 7.40-7.12(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 5.84-5.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C} H=\mathrm{CH}_{2}$), $5.12-4.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $4.72(1 \mathrm{H}, \mathrm{d}, J 9.5,3-\mathrm{H}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 2.85-2.35(3 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right),-0.01(3 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe})$ and $-0.32(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ; \delta_{\mathrm{C}} 174.4,142.2,134.8,128.2$, 128.1, 127.1, 116.6, 77.2, 55.3, 51.4, 33.3, 25.5, 17.9, -4.7 and -5.5 .

Ethyl (syn)-2-allyl-3-(tert-butyldimethylsiloxy)-3-phenylpropanoate 3 j and ethyl (anti)-2-allyl-3-(tert-butyldimethylsiloxy)-3phenylpropanoate 4 j . An oil; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1740,1647,1260$, $1177,1090,840,780$ and $703 ; m / z 333\left(\mathrm{M}^{+}-\mathrm{Me}, 2 \%\right), 291$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 98\right), 221$ (38), 157 (34), 103 (70), 75 (100) and 73 (62) [Found (HRMS): m / z, 291.1408. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 291.1416\right]$. Compound $3 \mathrm{j}: \delta_{\mathrm{H}} 7.41-7.19(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$, $5.84-5.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.08-4.86(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 4.77(1 \mathrm{H}, \mathrm{d}, J 8.1,3-\mathrm{H}), 3.88(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 2.81-2.38 ($3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 0.98 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.02(3 \mathrm{H}, \mathrm{s}$, SiMe) and -0.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$); $\delta_{\mathrm{C}} 172.9,142.8,135.8,127.9$, $127.5,126.7,116.3,76.0,60.0,55.6,33.0,25.7,18.1,14.0,-4.6$ and -5.2. Compound 4j: $\delta_{\mathrm{H}} 7.41-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.84-5.49$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.08-4.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.72(1 \mathrm{H}, \mathrm{d}$, $J 9.3,3-\mathrm{H}), 4.15\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.81-2.38(3 \mathrm{H}, \mathrm{m}$,

2-H and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.80$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), $-0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $-0.32(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}) ; \delta_{\mathrm{C}} 174.0,142.2,134.8,128.2,128.1,127.1,116.5,76.9$, $60.3,55.2,33.4,25.6,17.9,14.3,-4.8$ and -5.5 .

References

1 Preliminary communication: H. Nagano and Y. Kuno, J. Chem. Soc., Chem. Commun., 1994, 987.
2 N. A. Porter, B. Giese and D. P. Curran, Acc. Chem. Res., 1991, 24, 296; W. Smadja, Synlett, 1994, 1.
3 (a) D. J. Hart, H.-C. Huang, R. Krishnamurthy and T. Schwartz, J. Am. Chem. Soc., 1989, 111, 7507; (b) D. J. Hart and R. Krishnamurthy, Synlett, 1991, 412; (c) J. Org. Chem., 1992, 57, 4457.
4 (a) Y. Guindon, C. Yoakim, R. Lemieux, L. Boisvert, D. Delorme and J.-F. Lavallée, Tetrahedron Lett., 1990, 31, 2845; (b) Y. Guindon, J.-F. Lavallée, L. Boisvert, C. Chabot, D. Delorme, C. Yoakim, D. Hall, R. Lemieux and B. Simoneau, Tetrahedron Lett., 1991, 32, 27; (c) Y. Guindon, J.-F. Lavallée, M. Llinas-Brunet, G. Horner and J. Rancourt, J. Am. Chem. Soc., 1991, 113, 9701; (d) K. Durkin, D. Liotta, J. Rancourt, J.-F. Lavallée, L. Boisvert and Y. Guindon, J. Am. Chem. Soc., 1992, 114, 4912; (e) Y. Guindon, A. Slassi, J. Rancourt, G. Bantle, M. Bencheqroun, L. Murtagh, E. Ghiro and G. Jung, J. Org. Chem., 1995, 60, 288.

5 (a) M. Bulliard, H.-G. Zeitz and B. Giese, Synlett, 1991, 423; (b) B. Giese, M. Bulliard and H.-G. Zeitz, Synlett, 1991, 425; (c) M. Bulliard, M. Zehnder and B. Giese, Helv. Chim. Acta, 1991, 74, 1600; (d) B. Giese, W. Damm, F. Wetterich and H.-G. Zeitz, Tetrahedron Lett., 1992, 33, 1863; (e) P. Erdmann, J. Schäfer, R. Springer, H.-G. Zeitz and B. Giese, Helv. Chim. Acta, 1992, 75, 638; (f) B. Giese, W. Damm, F. Wetterich, H.-G. Zeitz, J. Rancourt and Y. Guindon, Tetrahedron Lett., 1993, 34, 5885; (g) B. Giese, M. Bulliard, J. Dickhaut, R. Halbach, C. Hassler, U. Hoffmann, B. Hinzen and M. Senn, Synlett, 1995, 116.

6 (a) D. P. Curran, A. C. Abraham and H. T. Liu, J. Org. Chem., 1991, 56, 4335; (b) D. P. Curran and A. C. Abraham, Tetrahedron, 1993, 49, 4821; (c) D. P. Curran and P. S. Ramamoorthy, Tetrahedron, 1993, 49, 4841.
7 A. L. J. Beckwith, R. Hersperger and J. M. White, J. Chem. Soc., Chem. Commun., 1991, 1151; M. Hamdani, B. De Jeso, H. Deleuze, A. Saux and B. Maillard, Tetrahedron: Asymmetry, 1993, 4, 1233; A. De Mesmaeker, A. Waldner, P. Hoffmann and T. Mindt, Synlett, 1993, 871.
8 Y. Yamamoto, S. Onuki, M. Yumoto and N. Asao, J. Am. Chem. Soc., 1994, 116, 421; M. Nishida, E. Ueyama, H. Hayashi, Y. Ohtake, Y. Yamaura, E. Yanaginuma, O. Yonemitsu, A. Nishida and N. Kawahara, J. Am. Chem. Soc., 1994, 116, 6455; M. Nishida, H. Hayashi, Y. Yamaura, E. Yanaginuma, O. Yonemitsu, A. Nishida and N. Kawahara, Tetrahedron Lett., 1995, 36, 269; M. Murakata, H. Tsutsui and O. Hoshino, J. Chem. Soc., Chem. Commun., 1995, 481; H. Urabe, K. Kobayashi and F. Sato, J. Chem. Soc., Chem. Commun., 1995, 1043; P. Renaud and M. Gerster, J. Am. Chem. Soc., 1995, 117, 6607; Y. Guindon, B. Guérin, C. Chabot, N. Mackintosh and W. W. Ogilvie, Synlett, 1995, 449.

9 (a) A. Waldner, A. De Mesmaeker, P. Hoffmann, T. Mindt and T. Winkler, Synlett, 1991, 101; (b) P. Renaud and M. Ribezzo, J. Am. Chem. Soc., 1991, 113, 7803; (c) T. Toru, Y. Watanabe, M. Tsusaka and Y. Ueno, J. Am. Chem. Soc., 1993, 115, 10464; (d) D. P. Curran and L. H. Kuo, J. Org. Chem., 1994, 59, 3259; (e) P. Renaud, N. Moufid, L.-H. Kuo and D. P. Curran, J. Org. Chem., 1994, 59, 3547; (f) P. Renaud, T. Bourquard, M. Gerster and N. Moufid, Angew. Chem., Int. Ed. Engl., 1994, 33, 1601.
10 K. Mori and H. Iwasaki, Tetrahedron, 1980, 36, 87.
11 D. Seebach and D. Wasmuth, Helv. Chim. Acta, 1980, 63, 197.
12 H. Nagano, M. Ohno, Y. Miyamae and Y. Kuno, Bull. Chem. Soc. Jpn., 1992, 65, 2814.
13 T. Kusumi, Yuki Gosei Kagaku Kyokaishi, 1993, 51, 462 (Chem. Abstr., 1993, 119, 180080h).
14 R. Porter, T. J. Marks and D. F. Shriver, J. Am. Chem. Soc., 1973, 95, 3548.
15 C. S. Springer, Jr., D. W. Merck and R. E. Sievers, Inorg. Chem., 1967, 6, 1105

Paper 5/04260G
Received 3rd July 1995
Accepted 15th August 1995

[^0]: \dagger Reactions under irradiation with a Xe lamp were more reproducible than those under irradiation with a tungsten-filament lamp, especially in the case of bromides $\mathbf{2 g}-\mathbf{2 j}$.

[^1]: \ddagger Coordination to the tert-butyldimethylsiloxy group is not included because lanthanide-induced shift of the bis-tert-butyldimethylsilyl ether of decane-1,10-diol was not observed when the ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of ethyl acetate and the bissilyl ether was measured in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$

